The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A.
نویسندگان
چکیده
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.
منابع مشابه
Unwinding of synthetic replication and recombination substrates by Srs2
The budding yeast Srs2 protein possesses 3' to 5' DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To...
متن کاملCorrection for Gopalakrishnan and Kumar, Opposing Roles for Two Molecular Forms of Replication Protein A in Rad51-Rad54-Mediated DNA Recombination in Plasmodium falciparum
UNLABELLED The bacterial RecA protein and its eukaryotic homologue Rad51 play a central role in the homologous DNA strand exchange reaction during recombination and DNA repair. Previously, our lab has shown that PfRad51, the Plasmodium falciparum homologue of Rad51, exhibited ATPase activity and promoted DNA strand exchange in vitro. In this study, we evaluated the catalytic functions of PfRad5...
متن کاملInteraction of human rad51 recombination protein with single-stranded DNA binding protein, RPA.
Replication protein A (RPA), a heterotrimeric single-stranded DNA binding protein, is required for recombination, and stimulates homologous pairing and DNA strand exchange promoted in vitro by human recombination protein HsRad51. Co-immunoprecipitation revealed that purified RPA interacts physically with HsRad51, as well as with HsDmc1, the homolog that is expressed specifically in meiosis. The...
متن کاملRole of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus...
متن کاملRad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation.
The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 42 شماره
صفحات -
تاریخ انتشار 2002